

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-78459-1

Client Project/Site: Portland Harbor Pre-Remedial Design

Revision: 2

For:

AECOM 1111 Third Ave Suite 1600 Seattle, Washington 98101

Attn: Amy Dahl

M. Elaine Walker

Authorized for release by: 11/6/2018 3:27:04 PM

Elaine Walker, Project Manager II (253)248-4972

elaine.walker@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: AECOM

TestAmerica Job ID: 580-78459-1

Project/Site: Portland Harbor Pre-Remedial Design

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	
Definitions	7
Client Sample Results	8
QC Sample Results	12
Chronicle	17
Certification Summary	19
Sample Summary	20
Chain of Custody	21
Receint Checklists	23

3

4

5

7

8

J 6

Case Narrative

Client: AECOM TestAmerica Job ID: 580-78459-1

Project/Site: Portland Harbor Pre-Remedial Design

Job ID: 580-78459-1

Laboratory: TestAmerica Seattle

Narrative

CASE NARRATIVE Client: AECOM

Project: Portland Harbor Pre-Remedial Design Report Number: 580-78459-1

REVISION 2: NOVEMBER 6, 2018

This revision was required in order to set the BEHP MDL to be consistent for all samples and QC in the job. On 6/29/2018 the MDLs were changed and updated in the LIMS based on new MDL verifications. This job arrived on the date that the MDLs were updated and some QC were performed in batches that contained the new MDL, while the sample contained the old MDL.

Also, please note - the reference spectra for Fluoranthene in the 8270D SIM PAH analysis is incorrect. A correct reference spectra has been added and is included in the report after the case narrative.

REVISION 1: OCTOBER 22, 2018

Per client request, 8270D SIM PAH results for sample PDI-SG-B432 (580-78459-3) are being reported from the 50x dilution, rather than the 500x as originally reported. The 500x data is reported as ND and the client requested the 50x be reported with flags for internal standard issues, rather than ND values at 500x. See added statement in the 8270D SIM PAH section of the narrative.

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) resulting from a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are an unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes within the calibration range of the instrument or that reduces the interferences thereby enabling the quantification of target analytes.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

Three samples were received on 6/29/2018 1:05 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the cooler at receipt time was 5.23°

The following samples were activated for Grain Size by the client on 8/16/18: PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3). All other analyses are on hold.

The following samples were taken off hold for all remaining analyses and started on 09/11/2018: PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3).

A sample container was provided to be archived frozen at the TestAmerica Sacramento laboratory pending potential additional analyses.

This report contains results of all analyses performed by TestAmerica Seattle.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

SEMIVOLATILE ORGANIC COMPOUNDS (GC-MS)

3

4

6

0

10

Case Narrative

Client: AECOM TestAmerica Job ID: 580-78459-1

Project/Site: Portland Harbor Pre-Remedial Design

Job ID: 580-78459-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

Samples PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3) were analyzed for semivolatile organic compounds (GC-MS) in accordance with 8270D. The samples were prepared on 09/15/2018 and analyzed on 09/20/2018.

All samples were frozen were preserved by freezing within holding time upon receipt in Sacramento on 6/30/18. The samples were not frozen at the Seattle location, so frozen volume was provided by the Sacramento lab to the Seattle lab on 9/10/18; received in Seattle on 9/11/18 and placed in the freezer upon receipt in Seattle. Samples were removed from the freezer on 9/12/2018 and prepped for analysis. Therefore the samples are in hold and H-flags have been removed for the following samples: PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3).

Internal standard (ISTD) response for the following method blank and laboratory control sample were outside of acceptance limits: (LCS 580-284043/2-A) and (MB 580-284043/1-A). The QC were not re-analyzed because neither the target analyte or surrogate refer to this internal standard.

Bis(2-ethylhexyl) phthalate was detected in method blank MB 580-284043/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and/or re-analysis of samples were not performed.

The opening CCV for analytical batch 284395 was 3% above %D criteria for surrogate Terphenyl-d14. Since all samples and batch QC were well above 3% of the lower %R limit for this surrogate, the small bias has not causing any of the data to be artificially passing due to the instrument bias. Therefore the data is qualified and reported. PDI-SG-B430 (580-78459-1), PDI-SG-B432 (580-78459-3), (CCVIS 580-284395/3), and (MB 580-284043/1-A)

The opening CCV for analytical batch 284567 was 1% above %D criteria for surrogate Terphenyl-d14. Since all samples and batch QC were well above 1% %R for this surrogate, the small bias has not causing any of the data to be artificially passing due to the instrument bias. Therefore the data is qualified and reported. (CCVIS 580-284567/3)

The following sample required a dilution due to the nature of the sample matrix: PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3). Elevated reporting limits (RLs) are provided.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

SEMIVOLATILE ORGANIC COMPOUNDS - SELECTED ION MODE (SIM)

Samples PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3) were analyzed for semivolatile organic compounds - Selected Ion Mode (SIM) in accordance with SW846 8270D_SIM. The samples were prepared on 09/15/2018 and analyzed on 09/18/2018, 09/19/2018 and 09/21/2018.

All samples were frozen were preserved by freezing within holding time upon receipt in Sacramento on 6/30/18. The samples were not frozen at the Seattle location, so frozen volume was provided by the Sacramento lab to the Seattle lab on 9/10/18; received in Seattle on 9/11/18 and placed in the freezer upon receipt in Seattle. Samples were removed from the freezer on 9/13/2018 and prepped for analysis. Therefore the samples are in hold and H-flags have been removed for the following samples: PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3).

Terphenyl-d14 failed the surrogate recovery criteria low for PDI-SG-B432 (580-78459-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Due to sample matrix effect on the internal standard (ISTD) for Chrysene-d12 (204.91%R) and Perylene-d12 (237.08%R), a dilution wa required for the following sample: PDI-SG-B432 (580-78459-3). Per client request, sample data has been qualified and reported from the 50x diluted run for the following analytes because the 500x analysis was ND. Please note that these results may be biased low for the following analytes: Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i,)perylene, Benzo(k)fluoranthene Chrysene, Dibenz(a,h)anthrancene, and Indeno(1,2,3-cd)pyrene.

The following samples were diluted due to the nature of the sample matrix: PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3). Elevated reporting limits (RLs) are provided.

3

Project/Site: Portland Harbor Pre-Remedial Design

Job ID: 580-78459-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ORGANOTINS BY GC/MS

Client: AECOM

Samples PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3) were analyzed for organotins by GC/MS in accordance with the Krone Method. The samples were prepared on 09/15/2018 and analyzed on 09/22/2018.

All samples were frozen were preserved by freezing within holding time upon receipt in Sacramento on 6/30/18. The samples were not frozen at the Seattle location, so frozen volume was provided by the Sacramento lab to the Seattle lab on 9/10/18; received in Seattle on 9/11/18 and placed in the freezer upon receipt in Seattle. Samples were removed from the freezer on 9/12/2018 and prepped for analysis. Therefore the samples are in hold and H-flags have been removed for the following samples: PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DIESEL AND EXTENDED RANGE ORGANICS

Samples PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3) were analyzed for diesel and extended range organics in accordance with Method NWTPH-Dx. The samples were prepared on 09/15/2018 and analyzed on 09/17/2018 and 09/18/2018.

All samples were frozen were preserved by freezing within holding time upon receipt in Sacramento on 6/30/18. The samples were not frozen at the Seattle location, so frozen volume was provided by the Sacramento lab to the Seattle lab on 9/10/18; received in Seattle on 9/11/18 and placed in the freezer upon receipt in Seattle. Samples were removed from the freezer on 9/13/2018 and prepped for analysis. Therefore the samples are in hold and H-flags have been removed for the following samples: PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3).

The %D of surrogate (o-Terphenyl) for CCV associated with batch 580-284139 was outside the upper control limits. All associated sample surrogate fell within acceptance criteria; therefore, the data have been reported. (CCV 580-284139/14), (CCV 580-284139/25) and (CCVRT 580-284139/3).

The following samples contained a hydrocarbon pattern in the diesel range; however, the elution pattern was later than the typical diesel fuel pattern used by the laboratory for quantitative purposes: PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3).

The following sample was diluted to bring the concentration of target analytes within the calibration range: PDI-SG-B432 (580-78459-3). Elevated reporting limits (RLs) are provided.

METALS (ICPMS)

Samples PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3) were analyzed for Metals (ICPMS) in accordance with 6020A LL. The samples were prepared on 08/23/2018 and analyzed on 08/24/2018.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL MERCURY

Samples PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3) were analyzed for total mercury in accordance with EPA SW-846 Method 7471A. The samples were prepared and analyzed on 08/22/2018.

The following samples were prepared outside of preparation holding time because the requested analysis was added after holding time expired: PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL ORGANIC CARBON

Samples PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3) were analyzed for total organic carbon in accordance with EPA SW-846 Method 9060. The samples were analyzed on 09/18/2018.

All samples were frozen were preserved by freezing within holding time upon receipt in Sacramento on 6/30/18. The samples were not frozen at the Seattle location, so frozen volume was provided by the Sacramento lab to the Seattle lab on 9/10/18; received in Seattle on

3

5

7

0

4.6

Case Narrative

Client: AECOM TestAmerica Job ID: 580-78459-1

Project/Site: Portland Harbor Pre-Remedial Design

Job ID: 580-78459-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

9/11/18 and placed in the freezer upon receipt in Seattle. Samples were removed from the freezer on 9/12/2018 and prepped for analysis. Therefore the samples are in hold and H-flags have been removed for the following samples: PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PERCENT SOLIDS

Samples PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3) were analyzed for percent solids in accordance with ASTM D2216. The samples were analyzed on 09/07/2018.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL SOLIDS @ 70C

Samples PDI-SG-B430 (580-78459-1) and PDI-SG-B432 (580-78459-3) were analyzed for Total Solids @ 70C. The samples were analyzed on 07/05/2018.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

5

6

7

Ö

9

10

Definitions/Glossary

Client: AECOM TestAmerica Job ID: 580-78459-1

Project/Site: Portland Harbor Pre-Remedial Design

Qualifier Description

Qualifiers

Qualifier

GC/MS Semi VOA

	•
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

* ISTD response or retention time outside acceptable limits

X Surrogate is outside control limits

B Compound was found in the blank and sample.

GC Semi VOA

Qualifier	Qualifier	Description
-----------	-----------	-------------

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier Qualifier Description

H Sample was prepped or analyzed beyond the specified holding time

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.	Abbreviation	These commonly	used abbreviations may	y or may not be	present in this report.
--	--------------	----------------	------------------------	-----------------	-------------------------

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

6

7

_

10

Client: AECOM Project/Site: Portland Harbor Pre-Remedial Design

Client Sample ID: PDI-SG-B430

Lab Sample ID: 580-78459-1 Date Collected: 06/28/18 14:18 **Matrix: Solid** Date Received: 06/29/18 13:05 Percent Solids: 47.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Methylnaphthalene	ND		51	4.6	ug/Kg	<u> </u>	09/15/18 08:40	09/18/18 23:49	2
Acenaphthene	ND		51	6.2	ug/Kg	☼	09/15/18 08:40	09/18/18 23:49	2
Acenaphthylene	ND		51	5.1	ug/Kg	₩	09/15/18 08:40	09/18/18 23:49	2
Anthracene	9.7	J	51	6.2	ug/Kg	☼	09/15/18 08:40	09/18/18 23:49	2
Benzo[a]anthracene	15	J	51	7.8	ug/Kg	₩	09/15/18 08:40	09/18/18 23:49	2
Benzo[a]pyrene	ND		51	4.1	ug/Kg	₩	09/15/18 08:40	09/18/18 23:49	2
Benzo[b]fluoranthene	26	J	51	6.1	ug/Kg	.	09/15/18 08:40	09/18/18 23:49	2
Benzo[g,h,i]perylene	ND		51	5.1	ug/Kg	₩	09/15/18 08:40	09/18/18 23:49	2
Benzo[k]fluoranthene	9.3	J	51	6.2	ug/Kg	₩	09/15/18 08:40	09/18/18 23:49	2
Chrysene	23	J	51	15	ug/Kg		09/15/18 08:40	09/18/18 23:49	2
Dibenz(a,h)anthracene	ND		51	7.4	ug/Kg	≎	09/15/18 08:40	09/18/18 23:49	2
Fluoranthene	51		51	14	ug/Kg	≎	09/15/18 08:40	09/18/18 23:49	2
luorene	ND		51	5.1	ug/Kg	☆	09/15/18 08:40	09/18/18 23:49	2
ndeno[1,2,3-cd]pyrene	ND		51	6.2	ug/Kg	≎	09/15/18 08:40	09/18/18 23:49	2
Naphthalene	12	J	51		ug/Kg	₩	09/15/18 08:40	09/18/18 23:49	2
Phenanthrene	30		51		ug/Kg		09/15/18 08:40	09/18/18 23:49	2
Pyrene	43		51		ug/Kg	☼	09/15/18 08:40	09/18/18 23:49	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Terphenyl-d14	71		57 - 120				09/15/18 08:40	09/18/18 23:49	2
Method: 8270D - Semivolatil	_	•	•						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Bis(2-ethylhexyl) phthalate	ND		1500	170	ug/Kg	<u> </u>	09/15/18 08:47	09/20/18 00:21	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Terphenyl-d14 (Surr)		Quanner	58 - 120				09/15/18 08:47		2
respically-u14 (Gail)	00		00-120				09/10/10 00.47	03/20/10 00.21	
Method: Organotins - Organ	otins. PSEP	(GC/MS)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Fributyltin	ND		150	39	ug/Kg	<u> </u>	09/15/18 09:00	09/22/18 20:17	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tripentyltin	54		10 - 113				09/15/18 09:00	09/22/18 20:17	
Method: NWTPH-Dx - North		Olatile Pet Qualifier	roleum Prod RL	•	•	D	Dronored	Analyzad	DilEa
Analyte		Qualifier			Unit	D ₹	Prepared	Analyzed	Dil Fa
#2 Diesel (C10-C24)	120		97		mg/Kg	φ. 		09/17/18 23:43	
Motor Oil (>C24-C36)	470		97	34	mg/Kg	¥	09/15/18 08:55	09/17/18 23:43	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	104		50 - 150				•	09/17/18 23:43	
Method: 6020B - Metals (ICF	P/MS)								
Analyte `	•	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Arsenic	4.0		0.33	0.067	mg/Kg	<u> </u>	08/23/18 17:18	08/24/18 15:43	
Cadmium	0.13	J	0.27	0.051	mg/Kg	☼	08/23/18 17:18	08/24/18 15:43	
_			0.67	0.15	mg/Kg	≎	08/23/18 17:18	08/24/18 15:43	
Copper	32		0.07	0.10	1119/119		00,20,10	00.20	
Copper Lead	13		0.33		mg/Kg			08/24/18 15:43	

Client Sample Results

Client: AECOM TestAmerica Job ID: 580-78459-1

Project/Site: Portland Harbor Pre-Remedial Design

Client Sample ID: PDI-SG-B430 Lab Sample ID: 580-78459-1

Date Collected: 06/28/18 14:18

Matrix: Solid
Pare Received: 06/29/18 12:05

Date Received: 06/29/18 13:05 Percent Solids: 47.5

Method: 7471A - Mercury (CVAA Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.038	JH	0.050	0.015	mg/Kg		08/22/18 09:57	08/22/18 14:12	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	27000		2000	44	mg/Kg			09/18/18 13:35	1
Total Solids	47.5		0.1	0.1	%			09/07/18 16:11	1
Total Solids @ 70°C	49		0.10	0.10	0/			07/05/18 13:11	1

Client Sample ID: PDI-SG-B432

Date Collected: 06/28/18 17:40 Date Received: 06/29/18 13:05

Client: AECOM

Lab Sample ID: 580-78459-3

Matrix: Solid
Percent Solids: 61.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Methylnaphthalene	ND		75	6.8	ug/Kg	<u> </u>	09/15/18 08:40	09/19/18 00:15	
Acenaphthene	ND		75	9.1	ug/Kg	₩	09/15/18 08:40	09/19/18 00:15	!
Acenaphthylene	ND		75	7.5	ug/Kg	☼	09/15/18 08:40	09/19/18 00:15	
Anthracene	ND		75	9.1	ug/Kg	₩	09/15/18 08:40	09/19/18 00:15	
Benzo[a]anthracene	11	J *	75	11	ug/Kg	☼	09/15/18 08:40	09/19/18 00:15	!
Benzo[a]pyrene	20	J *	75	6.0	ug/Kg	₩	09/15/18 08:40	09/19/18 00:15	!
Benzo[b]fluoranthene	19	J *	75	8.9	ug/Kg		09/15/18 08:40	09/19/18 00:15	
Benzo[g,h,i]perylene	34	J *	75	7.5	ug/Kg	₩	09/15/18 08:40	09/19/18 00:15	
Benzo[k]fluoranthene	ND	*	75	9.1	ug/Kg	₩	09/15/18 08:40	09/19/18 00:15	
Chrysene	27	J *	75	23	ug/Kg		09/15/18 08:40	09/19/18 00:15	
Dibenz(a,h)anthracene	ND	*	75	11	ug/Kg	₩	09/15/18 08:40	09/19/18 00:15	
Fluoranthene	30	J	75	21	ug/Kg	☼	09/15/18 08:40	09/19/18 00:15	
Fluorene	ND		75	7.5	ug/Kg		09/15/18 08:40	09/19/18 00:15	
Indeno[1,2,3-cd]pyrene	ND	*	75	9.1	ug/Kg	₩	09/15/18 08:40	09/19/18 00:15	
Naphthalene	19	J	75		ug/Kg	≎	09/15/18 08:40	09/19/18 00:15	
Phenanthrene	17		75		ug/Kg	 ф	09/15/18 08:40	09/19/18 00:15	
Pyrene	43	J	75		ug/Kg	₩	09/15/18 08:40	09/19/18 00:15	
	0/ 🗖	O	l innita				Duamanad	A	D:/ F
Surrogate Terphenyl-d14	%Recovery		Limits 57 - 120				Prepared 00/45/49 00/49	Analyzed 09/19/18 00:15	Dil F
							00, 10, 10 00. 10	00, 10, 10 00.10	
Method: 8270D - Semivolatile (Analyte		mpounds Qualifier	(GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Bis(2-ethylhexyl) phthalate		J B	1100		ug/Kg	\	•	09/20/18 00:46	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Terphenyl-d14 (Surr)	85		58 - 120				•	09/20/18 00:46	
Method: Organotins - Organot									
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil F
Fributyltin	ND		110	29	ug/Kg	₩	09/15/18 09:00	09/22/18 20:43	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Tripentyltin	69		10 - 113				09/15/18 09:00	09/22/18 20:43	
Wethod: NWTPH-Dx - Northwe	st - Semi-V	olatile Pet	roleum Prod	ucts (G0	C)				
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
#2 Diesel (C10-C24)	270	J	810		mg/Kg			09/18/18 00:27	
Motor Oil (>C24-C36)	1800		810	290	mg/Kg	≎	09/15/18 08:55	09/18/18 00:27	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
p-Terphenyl	92		50 - 150				09/15/18 08:55	09/18/18 00:27	
Method: 6020B - Metals (ICP/N	•								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Arsenic	3.6		0.27		mg/Kg	₩	08/23/18 17:18		
Cadmium	0.21	J	0.22		mg/Kg	☼		08/24/18 15:47	
_			0.55	0.12	mg/Kg	₩	08/23/18 17:18	08/24/18 15:47	
Copper	29		0.55	0.12	9/119		00/20/10 17:10	00/2 1/10 10:17	
Copper Lead	29 13		0.27	0.026	mg/Kg mg/Kg	φ.		08/24/18 15:47	

Client Sample Results

Client: AECOM TestAmerica Job ID: 580-78459-1

Project/Site: Portland Harbor Pre-Remedial Design

Client Sample ID: PDI-SG-B432 Lab Sample ID: 580-78459-3

Date Collected: 06/28/18 17:40 Matrix: Solid

Date Received: 06/29/18 13:05 Percent Solids: 61.4

Method: 7471A - Mercury (CVAA Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.047	Н	0.033	0.0099	mg/Kg	<u> </u>	08/22/18 09:57	08/22/18 14:14	1
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
Total Organic Carbon - Duplicates	30000		2000		mg/Kg	— <u> </u>		09/18/18 13:40	1
Total Solids	61.4		0.1	0.1	%			09/07/18 16:11	1

6

8

9

10

Client: AECOM TestAmerica Job ID: 580-78459-1

Project/Site: Portland Harbor Pre-Remedial Design

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-284043/1-A

Lab Sample ID: LCS 580-284043/2-A

Matrix: Solid

Analysis Batch: 284395

Surrogate

Analyte

Terphenyl-d14 (Surr)

Matrix: Solid

MB MB

Result Qualifier Analyte Bis(2-ethylhexyl) phthalate 3.89 J

MB MB %Recovery

Qualifier 107

Limits 58 - 120

Spike

Added

Limits

58 - 120

50.0

RL

30

MDL Unit

LCS LCS

46.4

Result Qualifier

MDL Unit

0.090 ug/Kg

0.12 ug/Kg

0.10 ug/Kg

0.12 ug/Kg

0.15 ug/Kg

0.080 ug/Kg

0.12 ug/Kg

0.30 ug/Kg

0.14 ug/Kg

0.28 ug/Kg

0.12 ug/Kg

0.16 ug/Kg

0.14 ug/Kg

0.19 ug/Kg

ug/Kg

ug/Kg

ug/Kg

0.10

0.12

0.10

Unit

ug/Kg

3.6 ug/Kg

Client Sample ID: Lab Control Sample

Prepared

Prepared

%Rec

93

D

Prep Type: Total/NA Prep Batch: 284043

Prep Type: Total/NA

Prep Batch: 284043

%Rec.

Limits

59 - 123

Client Sample ID: Method Blank

09/15/18 08:47 09/19/18 17:23

09/15/18 08:47 09/19/18 17:23

Analyzed

Analyzed

LCS LCS

 $\overline{\mathsf{ND}}$

ND

ND

ND

ND

ND

ND

ND

Surrogate Terphenyl-d14 (Surr)

Bis(2-ethylhexyl) phthalate

Analysis Batch: 284567

%Recovery Qualifier

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

RL

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Lab Sample ID: MB 580-284042/1-A

Matrix: Solid

2-Methylnaphthalene

Acenaphthene

Anthracene

Fluorene

Naphthalene

Phenanthrene

Terphenyl-d14

Indeno[1,2,3-cd]pyrene

Acenaphthylene

Analysis Batch: 284269

MB MB Analyte Qualifier Result

ND Benzo[a]anthracene Benzo[a]pyrene ND Benzo[b]fluoranthene ND Benzo[g,h,i]perylene ND Benzo[k]fluoranthene ND ND Chrysene Dibenz(a,h)anthracene ND Fluoranthene ND

Pyrene ND MB MB Surrogate %Recovery

Qualifier Limits 88 57 - 120 Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 284042 Prepared Analyzed Dil Fac

09/15/18 08:40 09/18/18 16:04

09/15/18 08:40 09/18/18 16:04

09/15/18 08:40 09/18/18 16:04

09/15/18 08:40 09/18/18 16:04

09/15/18 08:40 09/18/18 16:04

09/15/18 08:40 09/18/18 16:04

09/15/18 08:40 09/18/18 16:04

09/15/18 08:40 09/18/18 16:04

09/15/18 08:40 09/18/18 16:04

09/15/18 08:40 09/18/18 16:04 09/15/18 08:40 09/18/18 16:04

09/15/18 08:40 09/18/18 16:04

09/15/18 08:40 09/18/18 16:04

09/15/18 08:40 09/18/18 16:04

09/15/18 08:40 09/18/18 16:04

09/15/18 08:40 09/18/18 16:04

09/15/18 08:40 09/18/18 16:04

Prepared Dil Fac Analyzed 09/15/18 08:40 09/18/18 16:04

TestAmerica Seattle

Dil Fac

Dil Fac

TestAmerica Job ID: 580-78459-1

Client: AECOM Project/Site: Portland Harbor Pre-Remedial Design

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 580-284042/2-A

Matrix: Solid

Analysis Batch: 284269

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 284042

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
200	178		ug/Kg		89	68 - 120	
200	178		ug/Kg		89	68 - 120	
200	187		ug/Kg		94	68 - 120	
200	183		ug/Kg		92	73 - 125	
200	189		ug/Kg		95	66 - 120	
200	174		ug/Kg		87	72 - 124	
200	192		ug/Kg		96	63 - 121	
200	199		ug/Kg		100	63 - 120	
200	200		ug/Kg		100	63 - 123	
200	176		ug/Kg		88	69 - 120	
200	194		ug/Kg		97	70 - 125	
200	185		ug/Kg		92	74 - 125	
200	181		ug/Kg		91	73 - 120	
200	183		ug/Kg		92	65 - 121	
200	158		ug/Kg		79	70 - 120	
	Added 200 200 200 200 200 200 200	Added Result 200 178 200 178 200 187 200 183 200 189 200 174 200 192 200 199 200 200 200 176 200 194 200 185 200 181 200 183	Added Result Qualifier 200 178 200 178 200 187 200 183 200 189 200 174 200 192 200 199 200 200 200 176 200 194 200 185 200 183	Added Result Qualifier Unit 200 178 ug/Kg 200 178 ug/Kg 200 187 ug/Kg 200 183 ug/Kg 200 189 ug/Kg 200 174 ug/Kg 200 192 ug/Kg 200 199 ug/Kg 200 200 ug/Kg 200 176 ug/Kg 200 194 ug/Kg 200 185 ug/Kg 200 181 ug/Kg 200 183 ug/Kg	Added Result Qualifier Unit D 200 178 ug/Kg ug/Kg 200 187 ug/Kg 200 183 ug/Kg 200 189 ug/Kg 200 174 ug/Kg 200 192 ug/Kg 200 199 ug/Kg 200 200 ug/Kg 200 176 ug/Kg 200 194 ug/Kg 200 185 ug/Kg 200 181 ug/Kg 200 183 ug/Kg	Added Result Qualifier Unit D %Rec 200 178 ug/Kg 89 200 178 ug/Kg 89 200 187 ug/Kg 94 200 183 ug/Kg 92 200 189 ug/Kg 95 200 192 ug/Kg 96 200 199 ug/Kg 100 200 200 ug/Kg 100 200 176 ug/Kg 97 200 185 ug/Kg 92 200 181 ug/Kg 91 200 183 ug/Kg 92	Added Result Qualifier Unit D %Rec Limits 200 178 ug/Kg 89 68 - 120 200 178 ug/Kg 89 68 - 120 200 187 ug/Kg 94 68 - 120 200 183 ug/Kg 92 73 - 125 200 189 ug/Kg 95 66 - 120 200 174 ug/Kg 87 72 - 124 200 192 ug/Kg 96 63 - 121 200 199 ug/Kg 100 63 - 120 200 200 ug/Kg 100 63 - 123 200 176 ug/Kg 88 69 - 120 200 194 ug/Kg 97 70 - 125 200 185 ug/Kg 92 74 - 125 200 181 ug/Kg 91 73 - 120 200 183 ug/Kg 92 65 - 121

200

200

Limits

177

182

ug/Kg

ug/Kg

LCS LCS

Surrogate %Recovery Qualifier Terphenyl-d14

82

57 - 120

Method: Organotins - Organotins, PSEP (GC/MS)

Lab Sample ID: MB 580-284045/1-A

Matrix: Solid

Phenanthrene

Pyrene

Analysis Batch: 284676

Client Sample ID: Method Blank Prep Type: Total/NA

88

73 - 120

70 - 120

Prep Batch: 284045

RL Analyte **MDL** Unit Result Qualifier Prepared Analyzed Dil Fac 75 09/15/18 09:00 09/22/18 18:04 Tributyltin $\overline{\mathsf{ND}}$ 20 ug/Kg

MB MB

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Tripentyltin 52 10 - 113 09/15/18 09:00 09/22/18 18:04

Lab Sample ID: LCS 580-284045/2-A

Matrix: Solid

Analysis Batch: 284676

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 284045

Spike LCS LCS %Rec. Analyte Added Result Qualifier Limits Unit %Rec Tributyltin 71.8 46.9 J 65 14 - 150 ug/Kg

LCS LCS

Surrogate %Recovery Qualifier Limits Tripentyltin 64 10 - 113

TestAmerica Job ID: 580-78459-1

Project/Site: Portland Harbor Pre-Remedial Design

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-284044/1-A

Matrix: Solid

Client: AECOM

Analysis Batch: 284139

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 284044

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 50 #2 Diesel (C10-C24) $\overline{\mathsf{ND}}$ 12 mg/Kg 09/15/18 08:55 09/17/18 16:24 Motor Oil (>C24-C36) ND 50 18 mg/Kg 09/15/18 08:55 09/17/18 16:24

MB MB

Qualifier Limits Surrogate %Recovery Prepared Analyzed Dil Fac o-Terphenyl 94 50 - 150 09/15/18 08:55 09/17/18 16:24

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 580-284044/2-A **Matrix: Solid**

Analysis Batch: 284139

Prep Type: Total/NA Prep Batch: 284044

LCS LCS Spike %Rec. Limits **Analyte** Added Result Qualifier Unit %Rec #2 Diesel (C10-C24) 500 555 111 70 - 125 mg/Kg mg/Kg Motor Oil (>C24-C36) 500 545 109 70 - 129

LCS LCS

%Recovery Qualifier Limits Surrogate o-Terphenyl 122 50 - 150

Lab Sample ID: LCSD 580-284044/3-A

Matrix: Solid

Analysis Batch: 284139

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 284044

LCSD LCSD %Rec. Spike **RPD** Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit #2 Diesel (C10-C24) 500 598 mg/Kg 120 70 - 125 8 16 500 mg/Kg Motor Oil (>C24-C36) 585 117 70 - 12916

LCSD LCSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 121 50 - 150

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 580-282341/22-A

Matrix: Solid

Analysis Batch: 282750

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 282341

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.25	0.050	mg/Kg		08/23/18 17:18	08/24/18 14:19	- 5
Cadmium	ND		0.20	0.039	mg/Kg		08/23/18 17:18	08/24/18 14:19	5
Copper	ND		0.50	0.11	mg/Kg		08/23/18 17:18	08/24/18 14:19	5
Lead	ND		0.25	0.024	mg/Kg		08/23/18 17:18	08/24/18 14:19	5
Zinc	ND		2.5	0.81	mg/Kg		08/23/18 17:18	08/24/18 14:19	5

Lab Sample ID: LCS 580-282341/23-A

Matrix: Solid

Analyte

Arsenic

Analysis Batch: 282750

Spike

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 282341** LCS LCS %Rec. Result Qualifier Unit %Rec Limits

100

mg/Kg

80 - 120

TestAmerica Seattle

199

Added

TestAmerica Job ID: 580-78459-1

Project/Site: Portland Harbor Pre-Remedial Design

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sami	ole ID: L	CS 580-28234	11/23-A
	J.U		

Matrix: Solid

Analysis Batch: 282750

Client: AECOM

Client Sample ID:	Lab Control Samp	le
	Prep Type: Total/N	A

Prep Batch: 282341

	Spike	LCS L	.cs		%Rec.
Analyte	Added	Result C	Qualifier Unit	D %Rec	Limits
Cadmium	5.00	5.21	mg/Kg	104	80 - 120
Copper	25.0	25.2	mg/Kg	101	80 - 120
Lead	50.0	47.6	mg/Kg	95	80 - 120
Zinc	200	195	mg/Kg	98	80 - 120

Lab Sample ID: LCSD 580-282341/24-A

Matrix: Solid

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 282750							Prep Batch: 282341		
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	200	196		mg/Kg		98	80 - 120	1	20
Cadmium	5.00	5.18		mg/Kg		104	80 - 120	1	20
Copper	25.0	24.8		mg/Kg		99	80 - 120	2	20
Lead	50.0	47.4		mg/Kg		95	80 - 120	1	20
Zinc	200	195		mg/Kg		97	80 - 120	0	20

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 580-282153/22-A

Matrix: Solid

Analysis Batch: 282255

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 282153

•	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.030	0.0090	mg/Kg		08/22/18 09:57	08/22/18 13:25	1

Lab Sample ID: LCS 580-282153/23-A

Matrix: Solid

Analysis Batch: 282255

Prep Type: Total/NA Prep Batch: 282153

%Rec.

LCS LCS Spike Analyte Added Result Qualifier Limits Mercury 0.167 0.158 95 80 - 120 mg/Kg

Lab Sample ID: LCSD 580-282153/24-A

Matrix: Solid

Analysis Batch: 282255

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 282153

Prep Type: Total/NA

LCSD LCSD Spike %Rec. **RPD** Added Analyte Result Qualifier Unit D %Rec Limits RPD Limit 0.167 0.156 80 - 120 Mercury 94 20 mg/Kg

Method: 9060 PSEP - TOC (Puget Sound)

Lab Sample ID: MB 580-284243/5

Matrix: Solid

Analysis Batch: 284243

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Total Organic Carbon - Duplicates $\overline{\mathsf{ND}}$ 2000 44 mg/Kg 09/18/18 12:32

QC Sample Results

Client: AECOM TestAmerica Job ID: 580-78459-1

Project/Site: Portland Harbor Pre-Remedial Design

Method: 9060_PSEP - TOC (Puget Sound) (Continued)

Lab Sample ID: LCS 580-284243/6	Client Sample ID: Lab Control Sample
Matrix: Solid	Prep Type: Total/NA

Analysis Batch: 284243

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Organic Carbon -	 	4270	3440		mg/Kg	_	80	68 - 149	
Duplicates									

Lab Sample ID: LCSD 580-284243/7

Matrix: Solid

Client Sample ID: Lab Control Sample Dup
Prep Type: Total/NA

Analysis Batch: 284243

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Organic Carbon -	4270	3220		mg/Kg		76	68 - 149	6	32

Duplicates

TestAmerica Seattle

2

4

5

6

0

10

Client: AECOM

Project/Site: Portland Harbor Pre-Remedial Design

Client Sample ID: PDI-SG-B430

Date Collected: 06/28/18 14:18

Date Received: 06/29/18 13:05

Lab Sample ID: 580-78459-1

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9060_PSEP		1	284243	09/18/18 13:35	A1K	TAL SEA
Total/NA	Analysis	D 2216		1	283499	09/07/18 16:11	JCM	TAL SEA
Total/NA	Analysis	Moisture 70C		1	283652	07/05/18 13:11	HJM	TAL SEA

Client Sample ID: PDI-SG-B430

Date Collected: 06/28/18 14:18

Date Received: 06/29/18 13:05

Lab Sample ID: 580-78459-1

Matrix: Solid Percent Solids: 47.5

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			284043	09/15/18 08:47	DB	TAL SEA
Total/NA	Analysis	8270D		25	284395	09/20/18 00:21	ERZ	TAL SEA
Total/NA	Prep	3546			284042	09/15/18 08:40	BAH	TAL SEA
Total/NA	Analysis	8270D SIM		25	284269	09/18/18 23:49	W1T	TAL SEA
Total/NA	Prep	Organotin Prep			284045	09/15/18 09:00	KMS	TAL SEA
Total/NA	Analysis	Organotins		1	284676	09/22/18 20:17	ERZ	TAL SEA
Total/NA	Prep	3546			284044	09/15/18 08:55	BAH	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	284139	09/17/18 23:43	CJ	TAL SEA
Total/NA	Prep	3050B			282341	08/23/18 17:18	T1H	TAL SEA
Total/NA	Analysis	6020B		5	282750	08/24/18 15:43	FCW	TAL SEA
Total/NA	Prep	7471A			282153	08/22/18 09:57	T1H	TAL SEA
Total/NA	Analysis	7471A		1	282255	08/22/18 14:12	FCW	TAL SEA

Client Sample ID: PDI-SG-B432

Date Collected: 06/28/18 17:40

Date Received: 06/29/18 13:05

Lab Sample ID: 580-78459-3 **Matrix: Solid**

	Datcii	Datcii		Dilution	Datcii	Prepareu		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9060_PSEP		1	284243	09/18/18 13:40	A1K	TAL SEA
Total/NA	Analysis	D 2216		1	283499	09/07/18 16:11	JCM	TAL SEA
Total/NA	Analysis	Moisture 70C		1	283652	07/05/18 13:11	HJM	TAL SEA

Client Sample ID: PDI-SG-B432

Date Collected: 06/28/18 17:40

Date Received: 06/29/18 13:05

Lab Sample ID: 580-78459-3 **Matrix: Solid**

Percent Solids: 61.4

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			284043	09/15/18 08:47	DB	TAL SEA
Total/NA	Analysis	8270D		25	284395	09/20/18 00:46	ERZ	TAL SEA
Total/NA	Prep	3546			284042	09/15/18 08:40	BAH	TAL SEA
Total/NA	Analysis	8270D SIM		50	284269	09/19/18 00:15	W1T	TAL SEA
Total/NA	Prep	Organotin Prep			284045	09/15/18 09:00	KMS	TAL SEA
Total/NA	Analysis	Organotins		1	284676	09/22/18 20:43	ERZ	TAL SEA

Lab Chronicle

Client: AECOM TestAmerica Job ID: 580-78459-1

Project/Site: Portland Harbor Pre-Remedial Design

Client Sample ID: PDI-SG-B432 Lab Sample ID: 580-78459-3

 Date Collected: 06/28/18 17:40
 Matrix: Solid

 Date Received: 06/29/18 13:05
 Percent Solids: 61.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			284044	09/15/18 08:55	BAH	TAL SEA
Total/NA	Analysis	NWTPH-Dx		10	284139	09/18/18 00:27	CJ	TAL SEA
Total/NA	Prep	3050B			282341	08/23/18 17:18	T1H	TAL SEA
Total/NA	Analysis	6020B		5	282750	08/24/18 15:47	FCW	TAL SEA
Total/NA	Prep	7471A			282153	08/22/18 09:57	T1H	TAL SEA
Total/NA	Analysis	7471A		1	282255	08/22/18 14:14	FCW	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

3

4

5

7

_

Accreditation/Certification Summary

Client: AECOM TestAmerica Job ID: 580-78459-1

Project/Site: Portland Harbor Pre-Remedial Design

Laboratory: TestAmerica Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	17-024	01-19-19
ANAB	DoD ELAP		L2236	01-19-19
ANAB	ISO/IEC 17025		L2236	01-19-19
California	State Program	9	2901	11-05-18
Montana (UST)	State Program	8	N/A	04-30-20
Nevada	State Program	9	WA000502019-1	07-31-19
Oregon	NELAP	10	WA100007	11-05-19
US Fish & Wildlife	Federal		LE058448-0	07-31-19
USDA	Federal		P330-14-00126	02-10-20
Washington	State Program	10	C553	02-17-19

4

5

7

8

Sample Summary

Client: AECOM

Project/Site: Portland Harbor Pre-Remedial Design

TestAmerica Job ID: 580-78459-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-78459-1	PDI-SG-B430	Solid	06/28/18 14:18	06/29/18 13:05
580-78459-3	PDI-SG-B432	Solid	06/28/18 17:40	06/29/18 13:05

3

4

4

a

4.0

SURFACE SEDIMENT

5755-8th-Street-East							Сī	T A TR	ı Aı	E (^1	net	OD	v											-	
Tacoma, WA 98424-1317 Ph: 253-922-2310 Fax: 253-922-5047							CI	IAII	(O	r	USI	OD	1									- (2.0	(2.21.0	COC No: 1	
Client Contact				y Dahl / Che				Contac														6/29/	/2018		COCs
AECOM		Tel:	(206) 438-22	61 / (206) 43	8-2010		Lat	orator	Conta	ct: El	aine-W	alker		,		Carrier:	Courie	r						1 (1:	COCS
1111 3rd Ave Suite 1600				rnaround Tie										ş									ŀ		
Seattle, WA 98101		Calendar	(C) or Wor	k Days (W)						ž		8		8											
Phone: (206) 438-2700 Fax: 1+(866) 495-5288			·				1			H-D		98		<u> </u>			Ì								
Project Name. Portland Harbor Pre-Remedial Design		21	days							Ė	13	pig		92					j				- 1		
Investigation and Baseline Sampling		٤,	unys							2	D69	tal s		8,									- 1		
Portland, OR	(x)	Other AS	AP					1		rear	928/	, Fo	ں ا	ž	1				1		1	-			
Project #: 60566335 Study: Surface Water		C.MC						1668.4		ž	6	uo q	-20 C	į.	-							l			
								35.	mar .	etals	ASTM	E C	<u> </u>	ا و تا				ı					ı		
Sample Type: D/U								oner	PCDD/Fs 1613B	TPH Biesel, Metals, Mercury NWTPH-Dx, 6026B, 7471A	, v	Total organic carbon, Total solids 9060 (104C & 70C)	Archive Archive	PAHs, BEHP, Tributykin, 8270-SIM, 8270- LL, Kron/Unger											
			I				1 5	ğ	1.5)iese 1,74	Graia síze	8,0	3,0	8 5					1						
	Sample	Sample		000	Sampler's Initials	Total No. of Cont.	15	PCB Cang	ē	F 26	Ē	otal	1 45	14 A					İ		ļ			Sample Specific	Notes:
Sample Identification	Date	Time	Matrix	QC Sample	шния	or Corn.		<u> </u>		T.		F ~	-		- 			_		_		- maret			
PDI-SG-B430	6/28/2018	14:18	SS		MT	7	1	Н	н	H	х	Н	15	H											
PDI-SG-B431	6/28/2018	16:16	SS		MT	7	<u> </u>	н	H	н	x	н	H	13											
PDI-SG-B432	6/28/2018	17 40	SS		MT	7		13	H	Ħ	x	Н	Н	H											
							T	Π																	
		1			 	 	T	1	 																
		 		 			╁╌	╁				†	T												
	ļ	 			<u> </u>		╁	╁	\vdash			 	ļ												
	-			ļ		-	╀	╂			 	-	-	╂					\dashv						
		ļ		ļ		ļ	╁	₩		ļ			 	╁			+			-+					
							╄	 	<u> </u>	ļ	ļ							\dashv							
							1	ļ	<u> </u>		ļ	ļ	-	1					\dashv	+					
						<u> </u>	L		<u> </u>		L			\longrightarrow						$-\!\!+\!\!$					
Container Type: WMG=Wide Mouth Glass Jar, P=HDPE	, PP=Polypi	ropylene, A	4G=amber	glass, G≃gl	ass, RC=Re	sin Colum	7	1	ļ	<u> </u>	↓	ļ		 											
Preservative: HCI = Hydrochloric Acid, H3PO4 = Phosphoric Acid, HNO3 = Nitric Acid						<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>										<u> </u>				
Fraction: D = Dissolved, PRT = Particulate, T = Total (unfiltered)						ole Dis		linas	F	V lico	osal By l	l sh		rchiv	e For	12 Ma	onths								
								<u> </u>	Returi	1100	ieni		A ISP	USAI DY I	LOD		, NOTHE	C 1 O1							
Special Instructions/QC Requirements & Comments: Analyze samples for grain size ASAP, Hold (H) rem: Separate reports for each lab.	aining analy	/ses pendi	ng further i	nstruction.												5	.2	. .							
								1-	1					A		ر		ompan	v: å	-				Date/Time:	1000
Relinguished by	Cappy	722	1	Date/Time	9/18	1125	0	Recei		41	14	1_	$/ \setminus$	4				Λ	Ά.	<u>. t</u>	<u> </u>			6/29/18	1250
Relinquishelliby	Company:	<u> </u>	······································	Date/Time:	1 ~	1320		Rece	Kely !		7	0	0	$\mathcal{V}\mathcal{D}$)		C	Curbay	X	70	L			179/18	1320
1 Charles IV	$\frac{1}{2}$ /V	1-5		10/29		1		Recei	ved ov		=	\widehat{H}			-			ompan	>>\ Y A	<u> </u>	<u>~</u>			Daje/time	1000
Relinquished by:	Company:	COR	_	Date/fime	9/18	1 100	2	1	X	ciù	27	10	_					卫	<u>ر1</u>		<u> </u>			12.20.12	1000

Client: AECOM Job Number: 580-78459-1

Login Number: 78459 List Source: TestAmerica Seattle

List Number: 1

Creator: O'Connell, Jason I

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	